

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Specialist English [S2TCh2>JAS]

Course

Field of study Year/Semester

Chemical Technology 1/1

Area of study (specialization) Profile of study
Applied Electrochemistry general academic

Level of study Course offered in

second-cycle english

Form of study Requirements full-time compulsory

Number of hours

Lecture Laboratory classes Other (e.g. online)

0 0

Tutorials Projects/seminars

60 0

Number of credit points

4,00

Coordinators Lecturers

mgr inż. Dorota Żarnowska mgr inż. Dorota Żarnowska dorota.zarnowska@put.poznan.pl dorota.zarnowska@put.poznan.pl

mgr Aleksandra Wdowińska

aleksandra.wdowinska@put.poznan.pl

mgr Dorota Kudła-Rohloff

dorota.kudla-rohloff@put.poznan.pl

mgr Krzysztof Olszewski

krzysztof.olszewski@put.poznan.pl

Prerequisites

The already acquired language competence compatible with level B2 (CEFR). The ability to use general and field specific vocabulary, and grammatical structures required on the first level of studies. The ability to work individually and in a group; the ability to use various sources of information and reference works.

Course objective

1. Advancing students' language competence towards the level at least B2+ (CEFR). 2. Development of the ability to use academic and field specific language effectively in both receptive and productive language skills. 3. Improving the ability to understand field specific texts (familiarizing students with basic translation techniques). 4. Improving the ability to function effectively on an international market and on a daily basis.

Course-related learning outcomes

Knowledge:

As a result of the course, the student ought to acquire field specific vocabulary related to the following issues:

- 1. English for academic purposes an abstract
- 2. Electrolysis
- 3. Electroplating
- 4. Petrochemicals and polymers
- 5. Addition and condensation polymerisation
- 6. Catalysts
- 7. Nanomaterials
- 8. Presentation of students' engineering theses

and also define and explain notions, phenomena and processes connected with them.

K W03, K W06, P7S WG

Skills:

As a result of the course, the student is able to:

- give a talk on field specific or popular science topic (in English)
- discuss general and field specific issues using an appropriate linguistic and grammatical repertoire,
- formulate a text in English where he/she explains/describes a selected field specific topic, understand and analyze international, field specific literature
- give a presentation of his/her engineering thesis

K U01, K_U03, K_U06, P_7SUK

Social competences:

As a result of the course, the student is able to communicate effectively in a field specific/professional area, and to give a successful presentation in English.

He/she is able to recognize and understand cultural differences in a professional and private conversation, and in a different cultural environment.

K_K01, K_K03, K_K06, P_7SKK

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

- Formative assessment: tests during academic year (written and oral), presentations
- 1. Oral answer related to the material covered in each of the studies sections/chapters
- 2. Giving a presentation the grade will refer to the ESP content, appropriate language tools (ESP language, grammar...) as well as body language.
- 3. Written short tests/ tests/essyas after finishing each section/chapter (the grade will be given according to the following scale: not satisfactory 0-59%, satisfactory 60-65%, satisfactory plus 67-75%, good 76-85%, good plus 86-93%, very good 94-100%)
- 4. Short oral quizes questions during classes refering to the material (each question will be graded up to 5 points)
- 5. All homework done in time.
- Summative assessment: credit the final grade will be calculated as the mean of all the grades from the semester.

Programme content

- 1. English for academic purposes an abstract
- 2. Electrolysis
- 3. Electroplating
- 4. Petrochemicals and polymers
- 5. Addition and condensation polymerisation
- 6. Catalysts
- 7. Nanomaterials
- 8. Presentation of students' engineering theses

Teaching methods

work with texts, discussion, team work, translation, films, individual written and oral deliverance, individual meetings with students, homework analysis, classes on e-meeting platform, Moodle platform exercises...

Bibliography

Basic:

Richard Harwood and Ian Lodge, Cambridge IGCSE Chemistry, Coursebook, Fourth edition, 2014, Cambridge University Press, (IGCS)

Urszula Kamińska, English for Biotechnology, 2016, Publishing House, Gdańsk University of Technology English for Academics Book 1, Cambridge, British Council

Additional:

Richard Harwood and Ian Lodge, Cambridge IGCSE Chemistry, Workbook, Fourth edition, 2014, Cambridge University Press, (IGCS -W)

Gallagher, Rose Marie and Ingram, Paul. 2011. Complete Chemistry. Oxford: Oxford University Press

Breakdown of average student's workload

	Hours	ECTS
Total workload	100	4,00
Classes requiring direct contact with the teacher	60	2,50
Student's own work (literature studies, preparation for laboratory classes/ tutorials, preparation for tests/exam, project preparation)	40	1,50